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“Deep” RL for Robotics: Where we are today
Learning end-to-end

Levine, Sergey, et al. "Learning Hand-Eye Coordination for 
Robotic Grasping with Deep Learning and Large-Scale Data 
Collection." IJRR 37, 2018.



“Deep” RL for Robotics: Where we are today
Learning end-to-end sim2real Transfer
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The Problem

● End-to-end RL is sample inefficient per task
● sim2real methods rely on explicit alignment or closing 

the “reality gap”
● RL-learned skills are difficult to reuse and compose

4



Motivating Example: Pick and Place
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Our Approach

6Decomposability → Reusable skills → Simplicity



Skill Embedding Example: Pick, Move, Place 
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Skill Embedding Example: Pick, Move, Place 
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Learned skill space (embedding)
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Training evolution of skill embeddings

128-goal Reacher



Training evolution of skill embeddings

138-Goal Reacher 4-Goal Pusher



Method

Assumptions

● Useful library of “low-level” skills is known before learning
○ Diversity is important
○ Simpler skills → easier sim2real transfer

● All skills can be trained at once
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Method

Decompose and Simulate to Scale

1. Jointly learn diverse low-level “skill” policies in simulation, 
parameterized by a (learned) latent space

2. Directly transfer policies to the robot
3. Quickly search in latent space for effective policies (or 

sequences thereof) for real-world tasks
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Building Our Method
Single-Task Reinforcement Learning

Agent
p(a|s)

Environment
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Sutton and Barto. “Reinforcement Learning: An Introduction.” MIT Press, 1998.



Building Our Method
“Vanilla” Multi-Task RL
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Building Our Method
Multi-Task RL with Embeddings (our method)

Agent
p(a|s, z)

Environment
p(s’|s, a)

Embedding
p(z|t)

Inference
p(z|𝜏)
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Hausman, et al. “An Embedding Space for Transferrable Robot Skills”. ICLR 2018

𝜏 = (s, a)H



Experiments
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Sawyer Reacher
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https://docs.google.com/file/d/1BuM89Qda1-TVERiUFMlsiSlGAWNRaST2/preview


Simulation Reality

Sawyer Reacher - Sim vs. Real
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Sawyer Reacher - Composition (UCS)

Search-based sequencing
of task latents

22

https://docs.google.com/file/d/1BuM89Qda1-TVERiUFMlsiSlGAWNRaST2/preview


Sawyer Pusher
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https://docs.google.com/file/d/1BuM89Qda1-TVERiUFMlsiSlGAWNRaST2/preview


Sawyer Pusher - Single tasks

up down left right
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Sawyer Pusher - Composition (interpolation)
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Sawyer Pusher - Composition (UCS)
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Conclusions

Learning Embedding Space of Composable Robot Skills

Alternative approach to achieving robust sim2real transfer

○ Faster transfer and fine-tuning
○ Share training time among many tasks

Combine proven robotics methods
(e.g. search) with data-driven learning

○ See our ICRA submission “Zero-Shot Skill Composition
and Simulation-to-Real Transfer by Learning Task
Representations” arxiv.org/abs/1810.02422

https://arxiv.org/abs/1810.02422


Use our code!

RL research with real robots requires sophisticated 
infrastructure and experience

Please use our code!

■ github.com/rlworkgroup/garage ← framework
■ github.com/ryanjulian/embed2learn ← this paper

Happy to talk offline about tips and tricks for getting started
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https://github.com/rlworkgroup/garage
https://github.com/ryanjulian/embed2learn
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https://docs.google.com/file/d/1BuM89Qda1-TVERiUFMlsiSlGAWNRaST2/preview
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Our approach

Learning an Embedding Space for Transferable Robot Skills.
International Conference on Learning Representations (ICLR), 2018.
K. Hausman, J.T. Springenberg, Z. Wang, N. Heess, M. Riedmiller 31



Evidence for Learned Representation
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