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Problem: How to make robots (continually) adapt?

End-to-end RL: Lots of success, but mostly it looks a lot like supervised learning

Collect (a bunch of) data ¢ W g B 1
Learn from that data ¥ off LN
Deploy learned model
(there is no 4th step)
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The promise of RL:

Collect data
Learn
Deploy
GOTO 1
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Problem: How to make robots (continually) adapt?

94% 50% — 90%
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Preliminaries: QT-Opt Grasping Architecture
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Source: QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. Kalashnikov, et al. 2018.



Preliminaries: QT-Opt

r

Replay Buffers |

—— off-policy Bellman Updater |
QT J

| on-policy
train -
\ | J -
P v Qo(s,a)
Training Worker Eq.(1) J Model weights
—

Cross Entropy Method
m(s) = argmax, Q4(s,a)

Source: QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. Kalashnikov, et al. 2018.
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Baseline: Robustness of Visual Grasping Policies

e Visual end-to-end RL is surprisingly robust
e No change: most backgrounds, most new objects, broken gripper, normal lighting, offset gripper by
up to 5cm
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Baseline: Robustness of Visual Grasping Policies

e Visual end-to-end RL is surprisingly robust
e No change: most backgrounds, most new objects, broken gripper, normal lighting, offset gripper by
up to 5cm
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Baseline: Robustness of Visual Grasping Policies

e Visual end-to-end RL is surprisingly robust
e No change: most backgrounds, most new objects, broken gripper, normal lighting, offset gripper by
up to 5cm
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Baseline: \What the robot sees

Offset Gripper 10cm Harsh Lighting Transparent Bottles



Baseline: Robustness of Visual Grasping Policies

e Baseline study creates 5 challenge tasks
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Fine-Tuning for Off-Policy RL (vs. Supervised)

Case Study: Adding a “Head”

« Conventional SL approach:
o  Train the “body” + “head A” on base task
o Discard “head 17, graft “head 2” onto
network
o  Freeze “body” (or not), update network

’TasTk A‘ ’TasTk B] [Task C\ Task-
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l i Shared
i layers
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Source: An Overview of Multi-Task Learning in Deep Neural Networks. Ruder, 2017.
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Fine-Tuning for Off-Policy RL (vs. Supervised)

Case Study: Adding a “Head”

R Problem: RL needs to explore 566 Grasping Simulation - Adding a Head (online)
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Source: An Overview of Multi-Task Learning in Deep Neural Networks. Ruder, 2017.




Fine-Tuning for Off-Policy RL (vs. Supervised)

Techniques Studied (What didn’t work)

e Architectural
o Adding a Q-function head

o  Training only some layers (front, middle, back,
etc.)

o Re-initializing some layers
o  Training only batch norms
o eftc.
e Sampling
o Different sampling probability of old/new data
o  Using n-step returns (to get supervision info out
of same data)
e What was important
o  Gradients per new sample
o  Learning rate

Success Rate (%)
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Fine-Tuning for Off-Policy RL (vs. Supervised)
What does work

e Continue training the entire network

b5 Grasping Simulation - Target Task Data Ratio
° (there is no second bullet)

Success Rate (%)
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A Very Simple Method

e Fine-tuning method

@)

@)

Pre-Train: Pre-trained policy,
pre-training data

Explore using the pre-trained policy
(e.g. vanilla grasping)

Initialize QT-Opt with pre-trained policy
(Q-function), pre-training data, new
data

Adapt pre-trained policy using RL
select new vs. old data with 50%
probability

Evaluate updated policy on robot

e Completely offline

1. Pre-Train 2. Explore

43%
Success

Target
‘Q-function
Qofrset (5, @)

98%
Success

Adapted
Q-function
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A Very Simple Method: Experiments
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A Very Simple Method: Results
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A Very Simple Method: Results
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A Very Slmple Method: Results
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A Very Simple Method: Results




A Very Simple Method: Results
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A Very Simple Method: RL Matters

ErenilimageNet 20/9/ | @UIIES6 3%
. “Bad depth perception ‘



A Very Simple Method: Results

— 90% /5% — 93%
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Continual Learning: Experiment

Re-train a single lineage of policies repeatedly

Grasping
(Pre-Train)

Harsh Lighting Transparent Bottles Checkerboard

Backing Extend Gripper

Offset Gripper
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Continual Learning: Results
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Continual Learning: Results

Checkerboard
Backing

Grasping

(Pre-Train) Harsh Lighting

Transparent Bottles
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Insights and Issues: Sample Efficiency

Success Rate (%)

Sample Efficiency
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Insights and Issues: Knowing when to stop

Success Rate (%, N=10)

Forgetting in Off-Policy Fine-Tuning - Offset Gripper 10cm
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Insights and Issues: What gets updated?
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Conclusions

Offline fine-tuning: A promising building
block for continual learning

e Fast
1-4 hours of practice, 0.2%
o Simple

Barely different from regular training

e Repeatable
Works in a continual setting with ~0%
performance penalty

Future Directions

How extreme are the target tasks
can we adapt to?

— off-distribution and structural adaptation
Can we choose to explore (vs.
exploit) automatically?

— off-policy evaluation

Can we integrate this to create a fully

automatic learner?
— lifelong and continual learning



Thank You!

e Collaborators: Karol Hausman, Chelsea Finn, Sergey Levine, Ben Swanson
e Adviser: Gaurav Sukhatme
e CoRL organizers and reviewers

More Info

e Visit the website: https://ryanjulian.me/never-stop-learning
e Read the paper: https://arxiv.org/abs/2004.10190
e \Watch the video: https://voutu.be/pPDVewcSpdc
e Contact me: ryanjulian@amail.com / https://ryanjulian.me
Ours (exploration grasps) Comparisons
Challenge Task Original Policy 55 50 100 200 400 800 Best (A)  Scratch  ImageNet )
Checkerboard Backing 50% 67%  48%  71%  47%  89%  90%  90% (+40) 0% 0% — Every cellisa ~1 hr
itfond Geippa 75 % 6% 0% S1% 0% % 3wy ow 4% experiment!
Offset Gripper 10 cm 43% 73%  50%  60%  S6%  91%  98%  98% (+55)  37% 47%
Transparent Bottles 49% 46%  43%  65%  65%  58%  66%  66% (+17)  27% 20%

Baseline Grasping Task 86% 98% 81% 84% 78% 93% 89% 98% (+12) 0% 12%
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Questions?



